946 research outputs found

    Discovery of a massive variable star with Z=Zo/36 in the galaxy DDO 68

    Full text link
    The Local Volume dwarf galaxy DDO 68, from the spectroscopy of its two brightest HII regions (Knots 1 and 2) was designated as the second most metal-poor star-forming galaxy [12+log(O/H)=7.14]. In the repeated spectral observations in 2008 January with the 6-m telescope (BTA) of the HII region Knot 3 [having 12+log(O/H)=7.10+-0.06], we find a strong evidence of a transient event related to a massive star evolution. From the follow-up observation with the higher spectral resolution in 2008 February, we confirm this phenomenon, and give parameters of its emission-line spectrum comprising of Balmer HI and HeI lines. The luminosities of the strongest transient lines (Ha, Hb) are of a few 10^36 erg s^-1. We also detected an additional continuum component in the new spectrum of Knot 3, which displays the spectral energy distribution raising to ultraviolet. The estimate of the flux of this continuum leads us to its absolute V-band magnitude of ~-7.1. Based on the spectral properties of this transient component, we suggest that it is related to an evolved massive star of luminous blue variable type with Z=Zo/36. We briefly discuss observational constraints on parameters of this unique (in the aspect of the record low metallicity of the progenitor massive star) event and propose several lines of its study.Comment: 6 pages, 5 Postscript figures, to appear in MNRAS Letters in June 2008 issu

    VLT/GIRAFFE spectroscopic observations of the metal-poor blue compact dwarf galaxy SBS 0335-052E

    Get PDF
    We present two-dimensional spectroscopy of the extremely metal-deficient blue compact dwarf (BCD) galaxy SBS 0335-052E aiming to studyphysical conditions, element abundances and kinematical properties of the ionised gas in this galaxy. Observations were obtained in the spectral range 3620-9400A with the imaging spectrograph GIRAFFE installed on the UT2 of the Very Large Telescope (VLT). These observations are the first ones carried out so far with GIRAFFE in the ARGUS mode which allows to obtain simultaneously 308 spectra covering a 11.4"x7.3" region. We produced images of SBS 0335-052E in the continuum and in emission lines of different stages of excitation. We find that while the maximum of emission in the majority of lines, including the strong lines Hbeta 4861A, Halpha 6563A, [OIII] 4363,5007A, [OII] 3726,3729A, coincides with the youngest south-eastern star clusters 1 and 2, the emission of HeII 4686A line is offset to the more evolved north-west clusters 4,5. This suggests that hard ionising radiation responsible for the HeII 4686A emission is not related to the most massive youngest stars, but rather is connected with fast radiative shocks. This conclusion is supported by the kinematical properties of the ionised gas from the different emission lines as the velocity dispersion in the HeII 4686A line is systematically higher, by ~50%-100%, than that in other lines. The variations of the emission line profiles suggest the presence of an ionised gas outflow in the direction perpendicular to the galaxy disk. (abridged)Comment: 21 pages, 11 figures, accepted for publication in Astronomy and Astrophysic

    A New Approach to Systematic Uncertainties and Self-Consistency in Helium Abundance Determinations

    Full text link
    Tests of big bang nucleosynthesis and early universe cosmology require precision measurements for helium abundance determinations. However, efforts to determine the primordial helium abundance via observations of metal poor H II regions have been limited by significant uncertainties. This work builds upon previous work by providing an updated and extended program in evaluating these uncertainties. Procedural consistency is achieved by integrating the hydrogen based reddening correction with the helium based abundance calculation, i.e., all physical parameters are solved for simultaneously. We include new atomic data for helium recombination and collisional emission based upon recent work by Porter et al. and wavelength dependent corrections to underlying absorption are investigated. The set of physical parameters has been expanded here to include the effects of neutral hydrogen collisional emission. Because of a degeneracy between the solutions for density and temperature, the precision of the helium abundance determinations is limited. Also, at lower temperatures (T \lesssim 13,000 K) the neutral hydrogen fraction is poorly constrained resulting in a larger uncertainty in the helium abundances. Thus the derived errors on the helium abundances for individual objects are larger than those typical of previous studies. The updated emissivities and neutral hydrogen correction generally raise the abundance. From a regression to zero metallicity, we find Y_p as 0.2561 \pm 0.0108, in broad agreement with the WMAP result. Tests with synthetic data show a potential for distinct improvement, via removal of underlying absorption, using higher resolution spectra. A small bias in the abundance determination can be reduced significantly and the calculated helium abundance error can be reduced by \sim 25%.Comment: 51 pages, 13 figure

    Gas metallicity diagnostics in star-forming galaxies

    Full text link
    Generally the gas metallicity in distant galaxies can only be inferred by using a few prominent emission lines. Various theoretical models have been used to predict the relationship between emission line fluxes and metallicity, suggesting that some line ratios can be used as diagnostics of the gas metallicity in galaxies. However, accurate empirical calibrations of these emission line flux ratios from real galaxy spectra spanning a wide metallicity range are still lacking. In this paper we provide such empirical calibrations by using the combination of two sets of spectroscopic data: one consisting of low-metallicity galaxies with a measurement of [OIII]4363, and the other one consisting of galaxies in the SDSS DR4 whose metallicity has been determined from various strong emission lines in their spectra. This combined data set constitutes the largest sample of galaxies with information on the gas metallicity available so far and spanning the widest metallicity range. Our empirical diagrams show that the line ratio [OIII]/[OII] is a useful tool to break the degeneracy in the R_23 parameter when no information on the [NII] line is available. The line ratio [NeIII]/[OII] also results to be a useful metallicity indicator for high-z galaxies. Finally, we compare these empirical relations with photoionization models. We find that the empirical R_23-metallicity sequence is strongly discrepant with respect to the trend expected by models with constant ionization parameter, which is interpreted as a consequence of a strong metallicity dependence of the average ionization parameter in galaxies. This result should warn about the use of theoretical models with constant ionization parameter to infer metallicities from observed line ratios. (abbreviated)Comment: 27 pages, 19 figures, Astronomy and Astrophysics, in press. (Replaced with the accepted version.

    The metallicities of UM151, UM408 and A1228+12 revisited

    Full text link
    We present the results of new spectrophotometry and heavy element abundance determinations for 3 dwarf galaxies UM151, UM408 and A1228+12 (RMB132). These galaxies have been claimed in the literature to have very low metallicities, corresponding to log(O/H)+12 < 7.65, that are in the metallicity range of some candidate local young galaxies. We present higher S/N data for these three galaxies. UM151 and UM408 have significantly larger metallicities: log(O/H)+12 = 8.5 and 7.93, respectively. For A1228+12 our new log(O/H)+12 = 7.73 is close to that recalculated from earlier data (7.68). Thus, the rederived metallicities allow us to remove these objects from the list of galaxies with Z < 1/20 Z_Sun.Comment: LaTeX, 8 pages with 3 Postscript figures, A&A in pres

    On ionisation effects and abundance ratios in damped Lyman-alpha systems

    Full text link
    The similarity between observed velocity structures of Al III and singly ionised species in damped Lyman-alpha systems (DLAs) suggests the presence of ionised gas in the regions where most metal absorption lines are formed. To explore the possible implications of ionisation effects we construct a simplified two-region model for DLAs consisting of an ionisation bounded region with an internal radiation field and a neutral region with a lower metal content. Within this framework we find that ionisation effects are important. If taken into account, the element abundance ratios in DLAs are quite consistent with those observed in Milky Way stars and in metal-poor H II regions in blue compact dwarf galaxies. In particular we cannot exclude the same primary N origin in both DLAs and metal-poor galaxies. From our models no dust depletion of heavy elements needs to be invoked; little depletion is however not excluded.Comment: to appear in "Evolution of Galaxies. I. Observational clues", Eds. J.M. Vilchez, G. Stasinska, Astrophysics and Space Science, in press. 5 pages, including 3 figure

    HST observations of the blue compact dwarf SBS 0335-052: a probable young galaxy

    Get PDF
    We present HST WFPC2 V and I images and GHRS UV spectrophotometry of the spectral regions around Lyalpha_alpha and OI 1302 of the extremely metal-deficient (Z~Zsun/41) blue compact dwarf (BCD) galaxy SBS 0335-052. All the star formation in the BCD occurs in six super-star clusters (SSC) with ages =< 3-4 Myr. Dust is clearly present and mixed spatially with the SSCs. There is a supershell of radius ~380 pc, delineating a large supernova cavity. The instantaneous star formation rate is ~0.4 Msun yr^-1. Strong narrow Lyα\alpha emission is not observed. Rather there is low intensity broad (FWZI = 20 A) Lyα\alpha emission superposed on even broader Lyα\alpha absorption by the HI envelope. This broad low-intensity emission is probably caused by resonant scattering of Lyα\alpha photons. The BCD appears to be a young galaxy, undergoing its very first burst of star formation. This conclusion is based on the following evidence: 1) the underlying extended low-surface-brightness component is very irregular and filamentary, suggesting that a significant part of the emission comes from ionized gas; 2) it has very blue colors (-0.34 =< (V-I)0_0 =< 0.16), consistent with gaseous emission colors; 3) the OI 1302 line is not detected in absorption in the GHRS spectrum, setting an upper limit for N(O)/N(H) in the HI envelope of the BCD of more than 3000 times smaller than the value in Orion.Comment: 20 pages and 6 Postscript figures. Submitted to Astrophysical Journa
    • …
    corecore